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Summary
The asynchronous filtering problem for networked fuzzy non-homogeneous
Markov jump systems is investigated, with the consideration of packet dropout
and quantization. An event-triggered dynamic quantization scheme is proposed,
and a stability criterion is given to ensure the stochastic stability of the filtering
error systems with desired extended dissipative performance. This performance
provides a unified framework in the sense that it can degenerate to H∞, l2 − l∞,
dissipativity and passivity filter, respectively, under certain parameter sets. Fur-
thermore, an asynchronous filter design method with extended dissipative per-
formance is given based on the proposed stability criterion. In this method, the
existence of the quantizer is ensured by dynamic quantization levels and the
solution scope of the filter is enlarged by a free-connection weighting matrices
method. The theoretical design and analysis is finally evaluated using a practical
example.
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1 INTRODUCTION

Markov jump systems (MJSs) have already proved itself useful in modeling many practical systems such as solar power
receiver systems,1 manufacturing systems2 and circuit systems,3 whose dynamics are typically subject to abrupt changes
due to environmental disturbances, component failures, structural instability, and so forth.1,4,5 In MJSs, these abrupt
changes are modelled by a Markov chain governed switch rule among the “modes”, where the switch rule is usually
described by a mode transition probability matrix (MTPM), and a mode is referring to a subsystem of the MJS whose
dynamics are relatively stable. For homogeneous MJSs, that is, MJSs with time-invariant MTPM, existing achievements
can refer to Costa et al.,1 Mesquita,6 Geromel et al.7 and Zhu et al.8 for the stability and stabilization, filtering, min-
imax control and mode feedback control of MJSs. On the other hand, non-homogeneous MJSs, that is, MJSs with
time-varying MTPM, are more general and challenging. Several fundamental techniques include, the piecewise homo-
geneous approach which assumes the split of the MTPM into piecewise time-invariant ones,2,9 the polytopic approach
based on the polynomial cumulative form of the time-varying MTPM,10-13 the dwell-time switching approach where the
MTPM depends on the operation time,14 and the norm-bounded uncertainties approach designed for the norm-bounded
MTPM.15,16 Based on these techniques, achievements have been made to address issues in non-homogeneous MJSs
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including stability analysis,10,14 model reduction,11 filter design,12,13 and so forth. Especially, for the filtering problem,
the mode-independent H∞ filter design for nonlinear non-homogeneous MJSs with the multiplicative noises,17 and the
mode-dependent l2 − l∞ filtering for uncertain non-homogeneous MJSs by using polytope Lyapunov function,18 have
recently been reported.

Networked MJSs have recently attracted much attention due to their simple installation and easy operation. But the
advantages are not achieved at no cost: the unreliable transmissions and limited network bandwidth of the introduced
communication networks mean that, information can be both lost due to packet dropout, and quantized due to the digital
transmission. This brings to networked MJSs two challenges. Firstly, due to packet dropout, the modes available to the
filter may not synchronize with original modes, which accounts for the asynchronization phenomenon in practice.15 The
event-triggered scheme has been applied in the filtering issue for homogeneous MJSs,19,20 and for time-varying MTPM,21

showing its prevalence in networked MJSs. Secondly, quantization inevitably degrades system performance, especially the
so-call static quantization,22 and hence dynamic quantization is attracting but there are few achievements for networked
MJSs.23 That is, the filter problem for networked MJSs with packet dropout and quantization error, remains far from
solved till today.

In this paper, we endeavor to investigate the filtering problem of networked Fuzzy Non-homogeneous Markov Jump
Systems(FN-MJSs) with both packet dropout and quantization. Firstly, we design an event-triggered scheme and a
dynamic quantization method to reduce bandwidth occupation. Secondly, we propose an asynchronous extended dissi-
pativity filter under imperfect premise matching. We want to mention that the proposed extended dissipativity filter is a
generalization of existing results since the well-known H∞, l2 − l∞, dissipativity and passivity filters are its special cases.
Furthermore, a sufficient criterion for stochastic stability of error systems is proposed in the form of coupled linear matrix
inequalities. Based on the sufficient criterion, the asynchronous extended dissipativity filter is then designed using the
relaxation method. This method, transforms the original problem with time-varying MTPM into the time-invariant case
by introducing free-connection weighting matrices, and hence simplifies the design process of the filter via coupled linear
matrix inequalities. Finally, practical examples are given to illustrate the effectiveness of the extended dissipativity filter,
including both the H∞ case and the l2 − l∞ case. The main contributions of this paper are outlined as follows.

1. A more practical scenario is considered for the asynchronous filtering problem of networked non-homogeneous MJSs
which suffer from unknown disturbance noise and packet dropout. In such a scenario, premise variables of FN-MJSs
are not available to the filter due to packet dropouts. Existing results can be regarded as specific cases of the concerned
model with some restrictions, for example, if the MTPM is limited to be time-invariant, it will degenerate into the
homogeneous case;22 when the packet-dropout problem is ignored, it turns to be the synchronous case.24

2. The extended dissipativity filter is investigated which provides a unified framework. By selecting appropriate param-
eters, the filtering design will degenerate to H∞, l2 − l∞, dissipativity and passivity filter respectively.15,22,24 Moreover,
when designing the extended dissipativity filter, conservatism has been reduced since no special requests are imposed
on the form of time-varying MTPM.

3. It is the first attempt to consider both event-triggered scheme and dynamic quantization for MJSs. Compared with
existing results whose quantization levels condition may be unsolvable,23 the proposed quantizer design method in
this paper can ensure its existence on condition that the stability criterion can be satisfied. Furthermore, with the
introduction of the free-connection weighting matrices, the solution scope of asynchronous filtering can be enlarged.

The remainder of this paper is organized as follows: Section 2 describes the FN-MJSs model and the event-triggered
asynchronous filter with dynamic quantization. In addition, some definitions of stability and extended dissipative per-
formance about the FN-MJSs are also reviewed. Section 3 investigates the stabilization problem and the asynchronous
filter design. Simulations are presented to verify the effectiveness of the proposed filter design in Section 4. Finally, a brief
conclusion is drawn in Section 5.

Notation. The notations used in this paper are standard. Rn denotes n-dimensional Euclidean space, and (Ω,ℱ ,𝒫 ) is
a probability space whereΩ is the sample space,ℱ is the 𝜎-algebra of subsets of the sample space and𝒫 is the probability
measure onℱ . || ⋅ || denotes the Euclidean norm of a vector, or the induced Euclidean norm of a matrix. E{⋅} denotes the
mathematical expectation. The superscript T represents the transposition of vector or matrix. The block diagonal matrix is
denoted by diag{⋅}. X > 0(< 0) indicates that the matrix is positive(negative) definite. N stands for the set of non-negative
integers. The set of n × n (positive definite) symmetric matrices is denoted by (S+n ) Sn. In addition, in symmetric block
matrices or long matrix expressions, we use ∗ as an ellipsis for the terms that introduced by symmetry. ⌊x⌋ denotes the
largest integer i such that i ≤ x. X ⊗ Y stands for Kronecker product of matrix X and Y .e{A} is denoted by A + AT.
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F I G U R E 1 Filter framework of FN-MJSs

2 PROBLEM FORMULATION AND PRELIMINARIES

The filter framework of FN-MJSs with disturbance noise is shown in Figure 1: For the concerned FN-MJSs, the output
after triggering is firstly obtained with the event-triggered scheme applied. After triggering, the output remains a con-
tinuous value and is unable to be transmitted over network. For this reason, a dynamic quantizer is introduced. Taking
into account the existence of packet dropout, the filter can only receive partial information. In general, we focus on the
asynchronous filter design in this paper and investigate its extended dissipative performance.

2.1 FN-MJSs model

Consider the following discrete-time FN-MJSs on the probability space (Ω,ℱ ,𝒫 ):
Plant Rule 𝜁 : IF 𝜂1k is M

𝜁1, 𝜂2k is M
𝜁2, … , and 𝜂gk is M

𝜁g, THEN

⎧
⎪
⎨
⎪
⎩

x(k + 1) = A
𝜁

(rk)x(k) + B
𝜁

(rk)𝜔(k)
y(k) = C

𝜁

(rk)x(k) + D
𝜁

(rk)𝜔(k)
z(k) = L

𝜁

(rk)x(k) + R
𝜁

(rk)𝜔(k)

(1)

where 𝜂ik, i ∈ {1, 2, … , g} is the premise variable and 𝜂(k) = (𝜂1k, … , 𝜂gk). And M
𝜁 i, 𝜁 ∈ {1, 2, … , s} is the fuzzy set in

which s is the number of IF-THEN rules. x(k) ∈ Rnx denotes the state vector, 𝜔(k) ∈ Rn
𝜔 denotes the disturbance noise

belonging to l2[0,∞), y(k) ∈ R
ny denotes the measured output and z(k) ∈ Rnz is the objective signal to be estimated. rk

is a non-homogeneous Markov chain defined on probability space (Ω,ℱ ,𝒫 ), taking values in 𝒮1 = {1, 2, … , s1} with
time-varying MTPM Π = [𝜋ab(k)]s1×s1 satisfying:

𝜋ab(k) = Pr(rk+1 = b|rk = a);

𝜋ab(k) ≥ 0,
s1∑

b=1
𝜋ab(k) = 1, a, b ∈ 𝒮1

where 𝜋ab(k) is the transition probability from mode a at time k to mode b at time (k + 1). And A
𝜁

(rk),B𝜁 (rk),C𝜁

(rk),
D
𝜁

(rk),L𝜁 (rk), and R
𝜁

(rk) are known matrices with appropriate dimensions. For simplification, we write
A
𝜁

(rk),B𝜁 (rk),C𝜁

(rk), D
𝜁

(rk),L𝜁 (rk), R
𝜁

(rk) as A
𝜁a,B𝜁a,C𝜁a, D

𝜁a,L𝜁a, R
𝜁a if rk = a, a ∈ 𝒮1.

Considering the FN-MJSs (1), if rk = a, a ∈ 𝒮1, we have the following systems in a compact form:

⎧
⎪
⎨
⎪
⎩

x(k + 1) = Ahax(k) + Bha𝜔(k)
y(k) = Chax(k) + Dha𝜔(k)
z(k) = Lhax(k) + Rha𝜔(k)

(2)
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with

h
𝜁

(𝜂(k)) =
∏g

i=1M
𝜁 i(𝜂ik)

∑s
𝜁=1

∏g
i=1M

𝜁 i(𝜂ik)
.

Aha =
s∑

𝜁=1
h
𝜁

(𝜂(k))A
𝜁a,Bha =

s∑

𝜁=1
h
𝜁

(𝜂(k))B
𝜁a,Cha =

s∑

𝜁=1
h
𝜁

(𝜂(k))C
𝜁a,

Dha =
s∑

𝜁=1
h
𝜁

(𝜂(k))D
𝜁a,Lha =

s∑

𝜁=1
h
𝜁

(𝜂(k))L
𝜁a,Rha =

s∑

𝜁=1
h
𝜁

(𝜂(k))R
𝜁a

where M
𝜁 i(𝜂ik) is the grade of membership of 𝜂ik in M

𝜁 i. h
𝜁

(𝜂(k)) is the membership function. It is easy to have that
∑s
𝜁=1h

𝜁

(𝜂(k)) = 1 and for any 𝜁 ∈ {1, 2, … , s}, h
𝜁

(𝜂(k)) ≥ 0.

2.2 Event-triggered asynchronous filter with dynamic quantization

In this subsection, the event-triggered asynchronous filter with dynamic quantization is proposed. Firstly we give the
form of the event-triggered scheme to decide instants kj+1, j ∈ N, whose function is to transmit the measured output for
filter updating,

kj+1 = min
k≥kj

{

k|eT
y (k)Φaey(k) ≥ 𝜎yT(kj)Φay(kj)

}

(3)

here the triggered error ey(k) = y(k) − y(kj), Φa > 0 is a matrix to be determined and 𝜎 > 0 is a given constant. By intro-
ducing the event-triggered scheme, we collect data only at the sampling moment, which avoids data sampling effectively
at every moment as in time-triggered scheme.

Secondly we consider the quantization problem. Differing from the existing efforts, we use the dynamic quantization
instead of the static quantization to mitigate system performance degradation:

q
𝜇

(y(kj)) ≜ 𝜇q

(
y(kj)
𝜇

)

(4)

According to the works of Liberzon et al.25 we assume that there exist real numbers > Δ > 0, such that the following
two conditions hold:

if ||y(kj)|| ≤ 𝜇, then
‖
‖
‖
‖
‖
‖

𝜇q

(
y(kj)
𝜇

)

− y(kj)
‖
‖
‖
‖
‖
‖

≤ Δ𝜇

if ||y(kj)|| >𝜇, then
‖
‖
‖
‖
‖
‖

𝜇q

(
y(kj)
𝜇

)‖
‖
‖
‖
‖
‖

> ( − Δ)𝜇 (5)

where, 𝜇 and Δ are the dynamic quantization ranges, levels and error bounds, respectively.
According to the form of dynamic quantization (4), let yq(kj) be the signal after quantization. Then there is

yq(kj) = q
𝜇

(y(kj))

where y(kj) is the signal to be quantized at the moment k = kj. When k = kj, define the system’s quantization error as:

e
𝜇

(k) = yq(k) − y(k)

Finally, due to network-induced limitations, packet dropout happens unavoidably, which means yq(kj), the signal after
quantization, is measured intermittently. This random phenomenon can be modeled as a Bernoulli process

yf (kj) = 𝛼kj
yq(kj)
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ZHU et al. 815

with probability distribution Pr{𝛼kj
= 1} = E{𝛼kj

} = 𝛼(𝛼 ∈ [0, 1]). If the number of IF-THEN rules of the FN-MJSs is
available to the filter, based on the non-parallel distributed compensation,26,27 we consider the following fuzzy full-order
filter:

{
x̂(k + 1) = Afh(𝜌k)x̂(k) + Bfh(𝜌k)yf (kj)
ẑ(k) = Cfh(𝜌k)x̂(k)

(6)

Here 𝜌k ∈ 𝒮2 = {1, 2, … , s2} is a non-homogeneous discrete-time Markov chain which represents the stochastic switch-
ing of the filter mode, and its time-varying MTPM is described by 𝛱 = [𝜛rk+1

mn (k)]:

𝜛

rk+1
mn (k) = Pr(𝜌k+1 = n|𝜌k = m), m,n ∈ 𝒮2

such that 𝜛rk+1
mn (k) ≥ 0 and

∑s2
n=1𝜛

rk+1
mn (k) = 1. According to the approach proposed by Costa,28 a detector can be designed

to get the corresponding transition probabilities 𝜛rk+1
mn (k).

Generally speaking, the filter mode 𝜌k is different from the original mode rk due to the asynchronous phenomenon,
and thus𝜛rk+1

mn (k) is dependent on 𝜌k and rk+1. To characterize the relationship between 𝜌k and rk, the following conditional
possibility is given:

Pr(rk+1 = b, 𝜌k+1 = n|rk = a, 𝜌k = m) = 𝜛b
mn(k)𝜋ab(k), a, b ∈ 𝒮1,m,n ∈ 𝒮2

If 𝜌k = m, similar to the original FN-MJSs (2), the asynchronous filter (6) can be represented as

{
x̂(k + 1) = Afhmx̂(k) + Bfhmyf (kj)
ẑ(k) = Cfhmx̂(k)

(7)

with

gj(𝜗(k)) =
∏g

i=1Qji(𝜗ik)
∑s

j=1
∏g

i=1Qji(𝜗ik)
,

Afhm =
s∑

j=1
gj(𝜗(k))Afjm,Bfhm =

s∑

j=1
gj(𝜗(k))Bfjm,Cfhm =

s∑

j=1
gj(𝜗(k))Cfjm

where Qji(𝜗ik) is the grade of membership of 𝜗ik in Qji. gj(𝜗(k)) is the membership function satisfying 𝜗(k) = (𝜗1k, … , 𝜗gk).
It is clear that

∑s
j=1gj(𝜗(k)) = 1 and gj(𝜗(k)) ≥ 0,∀j ∈ {1, 2, … , s}which is different from the original system due to packet

dropout.

Remark 1. The event-triggered asynchronous filter given in (7) is a general one which is also suitable for many existing
scenarios. For example, by letting𝒮2 contains only one element, that is, s2 = 1, the concerned filter will degenerate into a
mode-independent one where all original modes are unavailable.17 Moreover, if rk = 𝜌k, then the concerned filter corre-
sponds to the synchronous filter which means no packet dropout occurs.24 Finally, for the specific case with 𝜌k = rk, that
is, the original mode is available at time k but may be unavailable at time k + 1, our model will degenerate to that of Tao
et al.22

2.3 Problem formulation

For the networked FN-MJSs (2) with event-triggered asynchronous filter (7), we formulate the problem as follows.
Let ex(k) = x(k) − x̂(k), ez(k) = z(k) − ẑ(k), x̃(k) =

[
xT(k) eT

x (k)
]T, then the error systems can be described as

{
x̃(k + 1) = Ãhax̃(k) + ̃Bha𝜔(k) + ̃Eha(e𝜇(kj) − ey(k)) + 𝜖(k)

ez(k) = ̃Chax̃(k) + ̃Dha𝜔(k)
(8)
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where

Ãha =
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))Ã𝜁 j, ̃Bha =
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k)) ̃B𝜁 j, ̃Cha =
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k)) ̃C𝜁 j,

̃Dha =
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k)) ̃D𝜁 j, ̃Eha =
s∑

j=1
gj(𝜗(k)) ̃Ej,

Ã
𝜁 j =

[
A
𝜁a 0

A
𝜁a − 𝛼BfjmC

𝜁a − Afjm Afjm

]

,

̃B
𝜁 j =

[
B
𝜁a

B
𝜁a − 𝛼BfjmD

𝜁a

]

,

̃Ej =
⎡
⎢
⎢
⎣

0
−𝛼kj

Bfjm

⎤
⎥
⎥
⎦

,

̃C
𝜁 j =

[

L
𝜁a − Cfjm Cfjm

]

,

̃D
𝜁 j = R

𝜁a, 𝜖(k) = (𝛼 − 𝛼kj
)(BfhmChax(k) + BfhmDha𝜔(k)).

Noticing the mathematical expectation of the term 𝜖(k) is zero, that is, E{𝜖(k)} ≡ 0, and taking mathematical expectation
of ̃Eha, we have

̄Eha ≜ E
{
̃Eha

}
=

s∑

j=1
gj(𝜗(k)) ̄Ej, ̄Ej =

[
0

−𝛼Bfjm

]

Noticing that both the filter modes and the original modes are governed by the non-homogeneous Markov chain, the
time-varying MTPMs can then be described as follows.

Denote the finite set 𝒮1= 𝒮 b

∪𝒮 b


, 𝒮2= 𝒮 n


∪𝒮 n


, ∀b ∈ 𝒮1,n ∈ 𝒮2 with

𝒮 b

≜ {b|𝜋ab(k) = 𝜋ab is time − invariant},𝒮 b


≜ {b|𝜋ab(k) ∈ [𝜋̌ab, 𝜋ab] is time − varying}

𝒮 n

≜ {n|𝜛b

mn(k) = 𝜛b
mn is time − invariant},𝒮 n


≜ {n|𝜛b

mn(k) ∈ [𝜛̌b
mn, 𝜛̂

b
mn] is time − varying} (9)

Here [𝜋̌ab, 𝜋ab], [𝜛̌b
mn, 𝜛̂

b
mn] are the known bounds of the time-varying terms of the MTPMs.

For notational convenience, we represent

[X(a, b)]b∈{b1,b2,… ,bn} =
[

XT(a, b1) XT(a, b2) … XT(a, bn)
]T
,

[X(a, b)]Db∈{b1,b2,… ,bn}
= diag {X(a, b1),X(a, b2), … ,X(a, bn)} ,

∑

n∈𝒮 n
IV

𝜛

b
mn = ΨIV ,

∑

b∈𝒮 b
IV

𝜋ab = ΠIV , [𝜛b
mn(k)]n∈𝒮 n

V
= ΨV ,

[𝜋ab(k)]b∈𝒮 b
V
= ΠV , 𝜛̌

b
mn + 𝜛̂b

mn = 𝜛
b
mn, 𝜋̌ab + 𝜋ab = 𝜋ab. (10)

Before the designing of the asynchronous filter, the following two definitions are given:

Definition 1 (stochastic stability; Reference 12). Taking into account the noise-free form of the error systems (8) with
the same coefficient matrices which is described as follows:

{
x̃(k + 1) = Ãhax̃(k) + ̃Eha(e𝜇(kj) − ey(k)) + 𝜖(k)
ez(k) = ̃Chax̃(k)

(11)

the noise-free error systems (11) are said to be stochastically stable with respect to any initial state (x̃(0), r0, 𝜌0), if the
following inequality holds:

E

{ ∞∑

k=0
||x̃(k)||2||

|
x̃(0), r0, 𝜌0

}

< ∞

Definition 2 (extended dissipative performance; Reference 29). For known real matrices 1 = −( +
1 )

T +
1 ≤ 0, 2,

3 =  T
3 and4 = ( +

4 )
T +

4 ≥ 0 satisfying

|| ̃Dha||||4|| = 0,
(||1|| + ||2||)||4|| = 0,

̃DT
ha1 ̃Dha +e

{


T
2
̃Dha

}
+3 > 0, (12)
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ZHU et al. 817

the error systems (8) are said to be extended dissipative if the following inequality holds for any integer 𝜏 and k ∈
{0, 1, … , 𝜏} under the zero initial condition:

E

{
𝜏∑

k=0
J(k)

}

= E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> sup
0≤k≤𝜏

E{eT
z (k)4ez(k)}

In general, the problem investigated in this paper is given as follows:

Problem 1. Considering the networked FN-MJSs (2) with dynamic quantization and packet dropout, the goal is to
find the event-triggered asynchronous filter (7) with coefficient matrices Afjm, Bfjm, Cfjm as well as appropriate quanti-
zation levels condition 𝜇(k) such that the error systems (8) are stochastically stable with a desired extended dissipative
performance.

Namely, for the noise-free error systems (11), the following inequality holds:

E

{ ∞∑

k=0
||x̃(k)||2||

|
x̃(0), r0, 𝜌0

}

< ∞

and for the error systems (8), the following inequality holds:

E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> sup
0≤k≤𝜏

E
{

eT
z (k)4ez(k)

}

3 MAIN RESULTS

Taking into account Problem 1, two essential challenges are to be solved: (1) the quantization levels condition and the
sufficient conditions of stochastic stability, and (2) the asynchronous filter design with extended dissipative performance.

3.1 Stability criterion

We firstly focus on the stochastic stability for the noise-free error systems (11) with the event-triggered scheme and the
dynamic quantization technology.

3.1.1 Stochastic stability

A sufficient criterion of the stochastic stability is addressed by the following Lemma 1 together with the quantization
levels condition given:

Lemma 1. For given scalars quantization range , error bound Δ, a positive number 𝛿 > 0 and a constant 𝜎 > 0, the
noise-free error systems (11) are stochastically stable if there exist small enough scalar 𝛽 > 0 and matrices P(a,m) > 0,Φa > 0
such that the following condition holds:

Ξ < 0 (13)

where

Ξ =

[
Ξ1 Ξ2

∗ Ξ3

]

,Ξ1 =
⎡
⎢
⎢
⎢
⎣

−P(a,m) + 𝜎 ⃗C
T
haΦa ⃗Cha −𝜎 ⃗C

T
haΦa 0

∗ (𝜎 − 1)Φa + (𝛿 + 1)2I 0
∗ ∗ −

2

Δ2 I

⎤
⎥
⎥
⎥
⎦

+ 𝛽I,

Ξ2 =
⎡
⎢
⎢
⎢
⎣

ÃT
ha ̃P(a,m) (𝛿 + 1)⃗C

T
ha

− ̄ET
ha
̃P(a,m) 0

̄ET
ha
̃P(a,m) 0

⎤
⎥
⎥
⎥
⎦

,Ξ3 = diag{− ̃P(a,m),−I}
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818 ZHU et al.

with ⃗Cha = [Cha 0], ̃P(a,m) =
∑s1

b=1
∑s2

n=1𝜋ab(k)𝜛b
mn(k)P(b,n). The quantization levels condition for parameters 𝜇(k) are

given as
1


||y(kj)|| ≤ 𝜇(k) ≤
𝛿 + 1


||y(kj)||, 𝛿 > 0 (14)

Proof. We construct the following Lyapunov function:30

V(x̃(k), rk = a, 𝜌k = m) = x̃T(k)P(a,m)x̃(k) (15)

For simplification, we write V(x̃(k), rk = a, 𝜌k = m) as V(k). Then, the forward difference operator of V(k) can be presented
as

ΔV(k) = V(x̃(k + 1), b,n|a,m) − V(k)
= x̃T(k + 1) ̃P(a,m)x̃(k + 1) − x̃T(k)P(a,m)x̃(k)

where

̃P(a,m) =
s1∑

b=1

s2∑

n=1
𝜋ab(k)𝜛b

mn(k)P(b,n),

Taking the mathematical expectation of ΔV(k), for the noise-free error systems (11), there is

E {ΔV(k)} = E{x̃T(k)
(

ÃT
ha ̃P(a,m)Ãha − P(a,m)

)

x̃(k) +
(

eT
𝜇

(kj) − eT
y (k)

)
̄ET

ha
̃P(a,m) ̄Eha

(

e
𝜇

(kj) − ey(k)
)

+ 2x̃T(k)
(

ÃT
ha ̃P(a,m) ̄Eha

) (

e
𝜇

(kj) − ey(k)
)

}

= E
{
𝜉

T(k)Ξ0𝜉(k)
}

(16)

where 𝜉(k) =
[

x̃T(k) eT
y (k) eT

𝜇

(kj)
]T

. According to the event-triggered condition (3), for any k ∈ [ki, ki+1], we have:

𝜑 ≜ E
{
𝜎yT(k)Φay(k) − 2𝜎yT(k)Φaey(k) + (𝜎 − 1)eT

y (k)Φaey(k)
}

= E

{

𝜉

T(k)
{

𝜎

[
⃗Cha 0 0

]T
Φa

[
⃗Cha 0 0

]

− 2𝜎
[
⃗Cha 0 0

]T
Φa

[

0 I 0
]

+ (𝜎 − 1)
[

0 I 0
]T
Φa

[

0 I 0
]}

𝜉(k)
}

= E
{
𝜉

T(k)Ξ1𝜉(k)
}
≥ 0 (17)

Based on the condition (5), if ||y(kj)|| ≤ 𝜇(k), the error e
𝜇

(kj) caused by quantization is bounded. Otherwise, e
𝜇

(kj) is
unbounded since ||y(kj)|| >𝜇(k). In general, e

𝜇

(kj) can be presented as follows,

||e
𝜇

(kj)|| ≤ 𝜇maxΔ =
(𝛿 + 1)Δ


||y(kj)|| =
(𝛿 + 1)Δ


||y(k) − ey(k)|| ≤
(𝛿 + 1)Δ


(||ey(k)|| + ||y(k)||), 𝛿 > 0 (18)

here ey(k) is the triggered error as defined in (3). Combining (2) with (18), one has

𝜉

T(k)
{[

⃗Cha 0 0
]T [

⃗Cha 0 0
]

+ diag {0, I, 0} − diag
{

0, 0, 2

(𝛿 + 1)2Δ2 I
}}

𝜉(k) = 𝜉T(k)Ξ2𝜉(k) ≥ 0 (19)

According to the matrix inequality (13) and applying Schur Complement, we can obtain

Ξ0 + Ξ1 + (𝛿 + 1)2Ξ2 < −𝛽I (20)

Based on the definition of negative-definite matrix,31 (20) implies

E
{
𝜉

T(k)
(
Ξ0 + Ξ1 + (𝛿 + 1)2Ξ2

)
𝜉(k)

}
= E

{
𝜉

T(k)Ξ0𝜉(k)
}
+ E

{
𝜉

T(k)Ξ1𝜉(k)
}
+ (𝛿 + 1)2E

{
𝜉

T(k)Ξ2𝜉(k)
}
< −𝛽I
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ZHU et al. 819

Based on (17) and (19) where 𝛿 > 0, together with (16), we get

E
{
𝜉

T(k)Ξ0𝜉(k)
}
= E {ΔV(k)} < −𝛽I

That is

E {ΔV(k)} ≤ −𝛽E
{
||𝜉(k)||2} (21)

Summing up both sides of (21) from 0 to ∞,

E

{ ∞∑

k=0
||𝜉(k)||2||

|
𝜉(0), r0, 𝜌0

}

≤
1
𝛽

E {V(0)} < ∞ (22)

Noticing that 𝜉(k) =
[

x̃T(k) eT
y (k) eT

𝜇

(kj)
]T

, there is

E

{ ∞∑

k=0
||𝜉(k)||2||

|
𝜉(0), r0, 𝜌0

}

≥ E

{ ∞∑

k=0
||x̃(k)||2||

|
x̃(0), r0, 𝜌0

}

(23)

Combining (23) with (22), one has

E

{ ∞∑

k=0
||x̃(k)||2||

|
x̃(0), r0, 𝜌0

}

< ∞

According to Definition 1, the noise-free error systems (11) are stochastically stable. ▪

3.1.2 Extended dissipativity

In this part, we consider the error systems (8) with disturbance noise and focus on the extended dissipative performance.
A sufficient criterion is addressed by the following theorem:

Theorem 1. For given matrices 1,2,3, 4 satisfying Definition 2, scalars quantization range , error bound Δ, a
positive number 𝛿 > 0 and a constant 𝜎 > 0, the error systems (8) are extended dissipative if there exist small enough scalar
𝛽 > 0 and matrices P(a,m) > 0, Φa > 0 such that the following conditions hold:

̂Ξ < 0 (24)

Λ < 0 (25)

where

̂Ξ =

[
̂Ξ1 ̂Ξ2

∗ ̂Ξ3

]

,Λ =

[
−P(a,m) ̃CT

ha( +
4 )

T

∗ −I

]

,

̂Ξ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−P(a,m) + 𝜎 ⃗C
T
haΦa ⃗Cha −𝜎 ⃗C

T
haΦa 0 − ̃CT

ha2

∗ (𝜎 − 1)Φa + (𝛿 + 1)2I 0 −𝜎DT
haΦa

∗ ∗ −
2

Δ2 I 0
∗ ∗ ∗ −e{ ̃DT

ha2} −3 + 𝜎DT
haΦaDha

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝛽I,

̂Ξ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ÃT
ha ̃P(a,m) (𝛿 + 1)⃗C

T
ha ̃CT

ha( +
1 )

T

− ̄ET
ha
̃P(a,m) 0 0

̄ET
ha
̃P(a,m) 0 0

̃BT
ha ̃P(a,m) (𝛿 + 1)DT

ha
̃DT

ha( +
1 )

T

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

̂Ξ3 = diag{− ̃P(a,m),−I,−I}
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820 ZHU et al.

with ⃗Cha = [Cha 0], ̃P(a,m) =
∑s1

b=1
∑s2

n=1𝜋ab(k)𝜛b
mn(k)P(b,n) and the quantization levels condition given in (14).

Proof. The Lyapunov function is defined in (15). Firstly we define the vector 𝜉
T
(k) =

[

x̃T(k) eT
y (k) eT

𝜇

(kj) 𝜔

T(k)
]

.
Based on the Definition 2, there is

E{ΔV(k) − eT
z (k)1ez(k) − 2eT

z (k)2𝜔(k) − 𝜔T(k)3𝜔(k)}

= E{𝜉
T
(k){

[

Ãha − ̄Eha ̄Eha ̃Bha

]T
̃P(a,m)

[

Ãha − ̄Eha ̄Eha ̃Bha

]

−
[

I 0 0 0
]T

P(a,m)
[

I 0 0 0
]

−
[
̃Cha 0 0 ̃Dha

]T
1

[
̃Cha 0 0 ̃Dha

]

− 2
[
̃Cha 0 0 ̃Dha

]T
2

[

0 0 0 I
]

−
[

0 0 0 I
]T
3

[

0 0 0 I
]

}𝜉(k)}

= E

{

𝜉

T
(k)Ξ0𝜉(k)

}

(26)

The event-triggered condition for the error systems (8) with noise is different from the noise-free error systems (11),
therefore, we have

𝜑 ≜ E
{
𝜎yT(k)Φay(k) − 2𝜎yT(k)Φaey(k) + (𝜎 − 1)eT

y (k)Φaey(k)
}

= E{𝜉
T
(k){𝜎

[
⃗Cha 0 0 Dha

]T
Φa

[
⃗Cha 0 0 Dha

]

− 2𝜎
[
⃗Cha 0 0 Dha

]T
Φa

[

0 I 0 0
]

+ (𝜎 − 1)
[

0 I 0 0
]T
Φa

[

0 I 0 0
]

}𝜉(k)}

= E

{

𝜉

T
(k)Ξ1𝜉(k)

}

≥ 0 (27)

For the error systems (8), according to (18), the inequality (19) can be rewritten as

𝜉

T
(k)

{[
⃗Cha 0 0 Dha

]T [
⃗Cha 0 0 Dha

]

+ diag {0, I, 0, 0} − diag
{

0, 0, 2

(𝛿 + 1)2Δ2 I, 0
}}

𝜉(k) = 𝜉
T
(k)Ξ2𝜉(k) ≥ 0

(28)

According to the condition (24), and using the Schur Complement, one has

Ξ0 + Ξ1 + (𝛿 + 1)2Ξ2 < −𝛽I (29)

Considering (26)–(29), similarly, E{𝜉
T
(k)Ξ0𝜉(k)} < −𝛽I is obtained. Recalling (26), we get

E
{

eT
z (k)1ez(k) + 2eT

z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)
}
> E {ΔV(k)} (30)

Under zero initial condition V(0) = 0, we sum up both sides of inequality (30) from 0 to 𝜏. Considering P(a,m) > 0, we
have

E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> E {V(𝜏 + 1)} ≥ 0 (31)

1) If4 is a zero matrix, for any integer k satisfying 0 ≤ k ≤ 𝜏, we have

E {V(𝜏 + 1)} ≥ E
{

eT
z (k)4ez(k)

}
= 0

Together with (31), we have

E

{
𝜏∑

k=0
J(k)

}

= E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> sup
0≤k≤𝜏

E
{

eT
z (k)4ez(k)

}

 10991115, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3551 by U

niversity O
f Science, W

iley O
nline L

ibrary on [10/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZHU et al. 821

2) If4 is not a zero matrix, there always exists an integer km, (0 ≤ km ≤ 𝜏) such that the following condition is satisfied

E
{

eT
z (km)4ez(km)

}
= sup

0≤k≤𝜏
E

{
eT

z (k)4ez(k)
}

By Definition 2, we yield that ̃Dha,1 and2 are zero matrix. According to (12),3 > 0. Then we obtain ez(k) = ̃Chax̃(k).
Furthermore, based on the condition (25), we have

̃CT
ha4 ̃Cha − P(a,m) < 0.

It derives that the following inequality holds

E {V(km)} = E
{

x̃T(km)P(a,m)x̃(km)
}
> E

{

x̃T(km) ̃C
T
ha4 ̃Chax̃T(km)

}

= E
{

eT
z (km)4ez(km)

}
(32)

When km = 0, under zero initial condition, (32) yields

E
{

eT
z (km)4ez(km)

}
< E {V(0)} = 0.

By (31), we have

E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> sup
0≤k≤𝜏

E
{

eT
z (k)4ez(k)

}

When 0 < km ≤ 𝜏,3 > 0,1 and2 are zero matrix, one has

E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> E

{km−1∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

Considering (30), we sum up both sides of inequality (30) from 0 to km − 1 which yields

E

{km−1∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> E {V(km)}

According to the above two inequalities, one has

E

{
𝜏∑

k=0
J(k)

}

= E

{
𝜏∑

k=0

(
eT

z (k)1ez(k) + 2eT
z (k)2𝜔(k) + 𝜔T(k)3𝜔(k)

)
}

> sup
0≤k≤𝜏

E
{

eT
z (k)4ez(k)

}

To summarize, according to Definition 2, the error systems (8) are extended dissipative.
The proof is completed. ▪

Remark 2. In the past efforts,23 the quantization levels condition is given in the form of 1


||y(kj)|| ≤ 𝜇(k) ≤ 2𝜂||y(kj)||,
which may be unsolvable when 2𝜂 < 1


. In this paper, the dynamic quantizer is modified as Equation (14) which always

exists on condition that the error systems satisfy Theorem 1. Nevertheless, the dynamic quantization levels have direct
effect on the error systems performance. When the quantization levels are low, the performance degradation will be small
at the cost that the amount of data to be transmitted will be large relatively. On the contrary, the amount of data to be
transmitted will be small if the quantization levels are high, which leads to a large degradation of system performance.
Therefore, appropriate quantization levels should be selected to balance the trade-off between performance degradation
and the amount of data to be transmitted.

3.2 Asynchronous filter design with the extended dissipative performance

Although a sufficient condition has been derived by Theorem 1 which ensures the stability and the desired extended dis-
sipative performance, it is difficult to be used for filter design directly due to the time-varying MTPM and the membership
function. In this subsection we focus on designing an asynchronous filter in the form of (7).

First of all, the following lemma is given, which is essential for further derivation.
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822 ZHU et al.

Lemma 2. For given membership functions satisfying gj(𝜗(k)) − ljhj(𝜗(k)) ≥ 0, (0 < lj ≤ 1) and matrices E
𝜁 j ∈ Rm×n, F

𝜁 j ∈
Rp×q, if there exist symmetric matrices G1

𝜁

∈ Rm×n
,G2

𝜁

∈ Rp×q such that the following conditions hold for each 𝜁, j ∈
{1, 2, … , s}:

E
𝜁 j − G1

𝜁

< 0

ljE𝜁 j − ljG1
𝜁

+ G1
𝜁

< 0

F
𝜁 j − G2

𝜁

< 0

ljF𝜁 j − ljG2
𝜁

+ G2
𝜁

< 0 (33)

then
∑s
𝜁=1

∑s
j=1h

𝜁

(𝜂(k))gj(𝜗(k))E𝜁 j < 0 and
∑s
𝜁=1

∑s
j=1h

𝜁

(𝜂(k))gj(𝜗(k))F𝜁 j < 0 hold for all admissible grades of h, g.

Proof. Similar to Kim et al.27 slack symmetric matrices G1
𝜁

, G2
𝜁

are introduced. For k ∈ N, there always exist

s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))
[
hj(𝜗(k)) − gj(𝜗(k))

]
G1
𝜁

=
s∑

𝜁=1
h
𝜁

(𝜂(k))G1
𝜁

[ s∑

j=1
hj(𝜗(k)) −

s∑

j=1
gj(𝜗(k))

]

=
s∑

𝜁=1
h
𝜁

(𝜂(k)) [1 − 1]G1
𝜁

= 0 (34)
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))
[
hj(𝜗(k)) − gj(𝜗(k))

]
G2
𝜁

=
s∑

𝜁=1
h
𝜁

(𝜂(k)) [1 − 1]G2
𝜁

= 0 (35)

Then considering the forms that
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))E𝜁 j (36)

Combining (34) with (36), we have

s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))E𝜁 j =
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))
[

gj(𝜗(k))E𝜁 j +
(

hj(𝜗(k)) − gj(𝜗(k))
)

G1
𝜁

]

=
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))
[

hj(𝜗(k))(ljE𝜁 j − ljG1
𝜁

+ G1
𝜁

) + (gj(𝜗(k)) − ljhj(𝜗(k))(E𝜁 j − G1
𝜁

)
]

As membership functions satisfy gj(𝜗(k)) − ljhj(𝜗(k)) ≥ 0, (0 < lj ≤ 1) and (33), we get

s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))E𝜁 j < 0.

Similarly, we get
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))F𝜁 j < 0.

This completes the proof. ▪

Noticing that Theorem 1 contains time-varying parameters and the membership function, it is difficult to get the fil-
tering gain. For this reason, Theorem 2 is given which is independent of the membership function. Meanwhile, condition
(24) is split into time-varying parts and time-invariant parts such that the asynchronous filter design can be completed.
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ZHU et al. 823

Theorem 2. For given matrices 1,2,3, 4 satisfying Definition 2, a constant 𝜎 > 0, a positive number 𝛿 > 0, scalars
quantization range, error boundΔ and the membership functions satisfying gj(𝜗(k)) − ljhj(𝜗(k)) ≥ 0,where 0 < lj ≤ 1, the
error systems (8) are stochastically stable with a desired extended dissipative performance if there exist small enough scalar
𝛽 > 0, matrices P(a,m) > 0,Φa > 0, AFjm, BFjm, CFjm, invertible matrices W1

jm, W2
jm, W3

jm, and symmetric matrices Γ1
𝜁

, Γ2
𝜁

such
that the following conditions hold for each 𝜁, j ∈ {1, 2, … , s}, a ∈ {1, 2, … , s1} and m ∈ {1, 2, … , s2}:

Λ
𝜁 j − Γ1

𝜁

< 0

ljΛ𝜁 j − ljΓ1
𝜁

+ Γ1
𝜁

< 0 (37)

Y T
̃P(a,m)Y + Ω

𝜁 j(a,m) − Γ2
𝜁

< 0

lj(Y T
̃P(a,m)Y + Ω

𝜁 j(a,m)) − ljΓ2
𝜁

+ Γ2
𝜁

< 0 (38)

where

Ω
𝜁 j(a,m) =

[
Ω1 Ω2

∗ Ω3

]

,Ω1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−P(a,m) + 𝜎 ⃗C
T
𝜁aΦa ⃗C𝜁a −𝜎 ⃗C

T
𝜁aΦa 0 −( ̃CF

𝜁 j)T2

∗ (𝜎 − 1)Φa + (𝛿 + 1)2I 0 −𝜎DT
𝜁aΦa

∗ ∗ −
2

Δ2 I 0
∗ ∗ ∗ −e{ ̃DT

𝜁 j2} −3 + 𝜎DT
𝜁aΦaD

𝜁a

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ 𝛽I,

Ω2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ω2,1 (𝛿 + 1)⃗C
T
𝜁a ( ̃CF

𝜁 j)T( +
1 )

T

−Ω2,2 0 0
Ω2,2 0 0
Ω2,3 (𝛿 + 1)DT

𝜁a
̃DT
𝜁 j( +

1 )
T

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,Ω3 = diag
{

−Wjm −WT
jm,−I,−I

}

,Λ
𝜁 j =

[
−P(a,m) ( ̃CF

𝜁 j)T( +
4 )

T

∗ −I

]

,

Wjm =

[
W1

jm W2
jm

W3
jm W2

jm

]

,Ω2,1 =

[
Ω

1
2,1 AFjm

Ω
2
2,1 AFjm

]T

,Ω2,2 =
[

−𝛼BT
Fjm −𝛼BT

Fjm

]

,Y =
[

0 0 0 0 I 0 0
]

,

Ω2,3 =
[

BT
𝜁a(W

1
jm +W2

jm)
T − 𝛼DT

𝜁aBT
Fjm BT

𝜁a(W
3
jm +W2

jm)
T − 𝛼DT

𝜁aBT
Fjm

]

,

̃CF
𝜁 j =

[

L
𝜁a − CFjm CFjm

]

,

Ω
1
2,1 = (W1

jm +W2
jm)A𝜁a − 𝛼BFjmC

𝜁a − AFjm,Ω
2
2,1 = (W3

jm +W2
jm)A𝜁a − 𝛼BFjmC

𝜁a − AFjm,

with ⃗C
𝜁a = [C𝜁a 0], ̃P(a,m) =

∑s1
b=1

∑s2
n=1𝜋ab(k)𝜛b

mn(k)P(b,n) , and the quantization levels condition is the same as (14).
The gain matrices of the asynchronous filter are given by

Afjm = (W2
jm)

−1AFjm,Bfjm = (W2
jm)

−1BFjm,Cfjm = CFjm. (39)

Proof. Define invertible matrices Wm as follows

Wm =
s∑

j=1
gj(𝜗(k))Wjm,

Substituting the gain matrices (39) into Ω
1
2,1 and Ω

2
2,1, there is

Ω
1
2,1 = (W1

jm +W2
jm)A𝜁a − 𝛼W2

jmBfjmC
𝜁a −W2

jmAfjm,

Ω
2
2,1 = (W3

jm +W2
jm)A𝜁a − 𝛼W2

jmBfjmC
𝜁a −W2

jmAfjm,

Then, noticing AFjm = W2
jmAfjm and the form of Ã

𝜁 j and Wjm, there is

Ω2,1 = ÃT
𝜁 jWT

jm
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824 ZHU et al.

Rewrite Ω2,2, Ω2,3 and ̃CF
𝜁 j as follows

Ω2,2 = ̄ET
j WT

jm, Ω2,3 = ̃BT
𝜁 jWT

jm,
̃CF
𝜁 j = ̃C

𝜁 j, (40)

Given that ̃P(a,m) > 0, for Wm =
∑s

j=1gj(𝜗(k))Wjm, we have

(
Wm − ̃P(a,m)

)
̃P−1(a,m)

(
Wm − ̃P(a,m)

)T
≥ 0

Then there is
̃P(a,m) −Wm −WT

m ≥ −Wm ̃P
−1(a,m)WT

m (41)

According to (40) and (41), one has

s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))
(

Y T
̃P(a,m)Y + Ω

𝜁 j(a,m)
)

≥ ̌Ξ

where

̌Ξ =

[
̌Ξ1 ̌Ξ2

∗ ̌Ξ3

]

,

̌Ξ1 = ̂Ξ1, ̌Ξ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ÃT
haWT

m (𝛿 + 1)⃗C
T
ha ̃CT

ha( +
1 )

T

− ̄ET
haWT

m 0 0
̄ET

haWT
m 0 0

̃BT
haWT

m (𝛿 + 1)DT
ha

̃DT
ha( +

1 )
T

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

̌Ξ3 = diag
{

−Wm ̃P
−1(a,m)WT

m,−I,−I
}

in which ̂Ξ1 is defined in (24). Since the membership functions satisfy gj(𝜗(k)) − ljhj(𝜗(k)) ≥ 0, (0 < lj ≤ 1), applying
Lemma 2 for (37) and (38), it holds that

s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))Λ𝜁 j = Λ < 0

̌Ξ ≤
s∑

𝜁=1

s∑

j=1
h
𝜁

(𝜂(k))gj(𝜗(k))
(

Y T
̃P(a,m)Y + Ω

𝜁 j(a,m)
)

< 0

Then (25) is satisfied.
Multiplying ̌Ξ by W m and W

T
m on the left-hand side and right-hand side, respectively, where W m =

diag{I, I, I, I, ̃P(a,m)W−1
m , I, I}, since ̌Ξ < 0, it yields that

W m ̌ΞW
T
m = ̂Ξ < 0

Then (24) is satisfied.
Since both (24) and (25) are satisfied, according to Theorem 1, the error systems (8) are extended dissipative. Mean-

while, (24) is the sufficient condition for (13) because of the properties of negative definite matrix.31 Therefore, the
noise-free error systems (11) are stochastically stable. To summarize, the error systems (8) are stochastically stable with
a desired extended dissipative performance.

This completes the proof. ▪

Remark 3. To the best of our knowledge, most existing achievements require that the premise variables of FN-MJSs are
available to the filter.32,33 However, the asynchronous filter (7) may have difficulties in obtaining the perfect matched
premise variables from the FN-MJSs (1) due to the package dropout. In this paper, we take into account a more general
scenario that the premise variables of FN-MJSs 𝜂(k) are unavailable to the asynchronous filter, which makes our filter
design more feasible. In Theorem 2, the membership functions satisfy gj(𝜗(k)) − ljhj(𝜗(k)) ≥ 0, with 0 < lj ≤ 1. It is easy
to see that such lj is sure to exist on the basis that the growth rate of the membership function is less than or equal to the
linear growth rate.
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ZHU et al. 825

Theorem 2 still includes the time-varying MTPM, which means we have to solve infinite linear matrix inequalities to
obtain the filter gain. To deal with this, the following theorem proposes a sufficient condition for the existence of the asyn-
chronous filter with the prescribed extended dissipative performance. The conditions in this theorem are time-invariant
such that the linear matrix inequalities are solvable.

Theorem 3. For given matrices 1, 2, 3, 4 satisfying Definition 2, scalars quantization range , error bound Δ, a
positive number 𝛿 > 0, a constant 𝜎 > 0 and the membership functions satisfying gj(𝜗(k)) − ljhj(𝜗(k)) ≥ 0, where 0 < lj ≤ 1,
the error systems (8) are stochastically stable with a desired extended dissipative performance, if there exist small enough
scalar 𝛽 > 0, matrices P(a,m) > 0,Φa > 0,𝜙

1
bmn < 0,𝜙

2
ab < 0,𝜙

4
bm,𝜙

5
bm, AFjm, BFjm, CFjm, invertible matrices W1

jm, W2
jm, W3

jm,
and symmetric matrices Γ1

𝜁

, Γ2
𝜁

such that the following conditions hold for each 𝜁, j ∈ {1, 2, … , s}, a ∈ {1, 2, … , s1} and
m ∈ {1, 2, … , s2}:

Υ1
𝜁 j + Υ < 0 (42)

Υ2
𝜁 j + ljΥ < 0 (43)

Λ
𝜁 j − Γ1

𝜁

< 0
ljΛ𝜁 j − ljΓ1

𝜁

+ Γ1
𝜁

< 0
(44)

where

Υ1
𝜁 j =

⎡
⎢
⎢
⎢
⎣

̄Ω
𝜁 j(a,m) − Γ2

𝜁

0

0 0

⎤
⎥
⎥
⎥
⎦

,Υ2
𝜁 j =

⎡
⎢
⎢
⎢
⎣

lj
(
̄Ω
𝜁 j(a,m) − Γ2

𝜁

)
+ Γ2

𝜁

0

0 0

⎤
⎥
⎥
⎥
⎦

,

Υ = 𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5, ̄𝜙
3
bn = P(b,n),

𝜙1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
b∈𝒮1

∑
n∈𝒮 n

V
𝜛̌

b
mn𝜛̂

b
mnY Te{ ̄𝜙1

bmn}Y ∗ ∗ ∗

0 0 ∗ ∗
[[
− 𝜛̄b

mn ̄𝜙
1
bmnY

]

n∈𝒮 n
V

]

b∈𝒮 b
V

0
[[
e{ ̄𝜙1

bmn}
]D

n∈𝒮 n
V

]D

b∈𝒮 b
V

∗
[[
− 𝜛̄b

mn ̄𝜙
1
bmnY

]

n∈𝒮 n
V

]

b∈𝒮 b
IV

0 0
[[
e{ ̄𝜙1

bmn}
]D

n∈𝒮 n
V

]D

b∈𝒮 b
IV

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝜙2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
b∈𝒮 b

V
𝜋ab𝜋abY Te{ ̄𝜙2

ab}Y ∗ ∗ ∗

[
− 𝜋̄ab ̄𝜙

2
abY

]

b∈𝒮 b
V

[
e{ ̄𝜙2

ab}
]D

b∈𝒮 b
V

∗ ∗

0 0 0 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝜙3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
b∈𝒮 b

IV

∑
n∈𝒮 n

IV
𝜛

b
mn𝜋abY T

̄

𝜙

3
bnY ∗ ∗ ∗

[ ∑
n∈𝒮 n

IV

𝜛

b
mn
2
̄

𝜙

3
bnY

]

b∈𝒮 b
V

0 ∗ ∗

0
[[ 1

2
̄

𝜙

3
bn

]

n∈𝒮 n
V

]D

b∈𝒮 b
V

0 ∗
[[

𝜋ab
2
̄

𝜙

3
bnY

]

n∈𝒮 n
V

]

b∈𝒮 b
IV

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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826 ZHU et al.

𝜙4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
b∈𝒮 b

IV
𝜋ab(ΨIV − 1)Y Te{ ̄𝜙4

bm}Y ∗ ∗ ∗

[
(ΨIV − 1) ̄𝜙4

bmY
]

b∈𝒮 b
V

0 ∗ ∗

0
[[
̄

𝜙

4
bm

]

n∈𝒮 n
V

]D

b∈𝒮 b
V

0 ∗
[[
𝜋ab ̄𝜙

4
bmY

]

n∈𝒮 n
V

]

b∈𝒮 b
IV

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝜙5 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y Te
{
(ΠIV − 1) ̄𝜙5

a
}

Y ∗ ∗ ∗

[
̄

𝜙

5
aY

]

b∈𝒮 b
V

0 ∗ ∗

0 0 0 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with ⃗C
𝜁a = [C𝜁a 0]. Dynamic quantization levels 𝜇(k) are the same as (14).ΨIV ,ΠIV ,𝜛b

mn and 𝜋ab are defined in (10). Y ,
Λ
𝜁 j, Ω𝜁 j(a,m) and the gain matrices of the asynchronous filter are defined in Theorem 2.

Proof. Define Θ as the follows,

Θ ≜ Y T
̃P(a,m)Y =

s1∑

b=1

s2∑

n=1
𝜋ab(k)𝜛b

mn(k)Y TP(b,n)Y

Then, we define 𝜙3,11 =
∑

b∈𝒮 b
IV

∑
n∈𝒮 n

IV
𝜛

b
mn𝜋abY T

𝜙

3
bnY . Considering whether the transition probabilities in MTPM are

time varying, we have

Θ =
∑

b∈𝒮 b
IV

∑

n∈𝒮 n
V

𝜛

b
mn(k)𝜋abY T

𝜙

3
bnY +

∑

b∈𝒮 b
V

∑

n∈𝒮 n
IV

𝜛

b
mn𝜋ab(k)Y T

𝜙

3
bnY

+
∑

b∈𝒮 b
V

∑

n∈𝒮 n
V

𝜛

b
mn(k)𝜋ab(k)Y T

𝜙

3
bnY + 𝜙3,11

Since 𝜛b
mn(k) and 𝜋ab(k) are scalars, we change their positions in the equation and get

Θ = e
{

∑

b∈𝒮 b
IV

∑

n∈𝒮 n
V

𝜛

b
mn(k)Y T 1

2
𝜋ab𝜙

3
bnY +

∑

b∈𝒮 b
V

⎛
⎜
⎜
⎝

𝜋ab(k)Y T
∑

n∈𝒮 n
IV

1
2
𝜛

b
mn𝜙

3
bnY

⎞
⎟
⎟
⎠

+
∑

b∈𝒮 b
V

∑

n∈𝒮 n
V

𝜛

b
mn(k)Y T 1

2
𝜙

3
bn𝜋ab(k)Y

}

+ 𝜙3,11

Motivated by the method of Kim et al.15 by the form of Kronecker product, Θ can be rewritten as

Θ = e
{

∑

b∈𝒮 b
IV

[ΨV ⊗ Y ]T[1
2
𝜋ab𝜙

3
bnY ]n∈𝒮 n

V
+ [ΠV ⊗ Y ]T[

∑

n∈𝒮 n
IV

1
2
𝜛

b
mn𝜙

3
bnY ]b∈𝒮 b

V

+
∑

b∈𝒮 b
V

[ΨV ⊗ Y ]T[1
2
𝜙

3
bn]n∈𝒮 n

V
[𝜋ab(k)Y ]

}

+ 𝜙3,11

Furthermore, we consider the other summation term of Θ, we have

Θ = e
⎧
⎪
⎨
⎪
⎩

[ΨV ⊗ Y ]T
b∈𝒮 b

IV
[[1

2
𝜋ab𝜙

3
bnY ]n∈𝒮 n

V
]b∈𝒮 b

IV
+ [ΠV ⊗ Y ]T

⎡
⎢
⎢
⎣

∑

n∈𝒮 n
IV

1
2
𝜛

b
mn𝜙

3
bnY

⎤
⎥
⎥
⎦b∈𝒮 b

V

+[ΨV ⊗ Y ]T
b∈𝒮 b

V
[[1

2
𝜙

3
bn]n∈𝒮 n

V
]D

b∈𝒮 b
V
[ΠV ⊗ Y ]

}

+ 𝜙3,11 (45)

 10991115, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3551 by U

niversity O
f Science, W

iley O
nline L

ibrary on [10/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZHU et al. 827

Let 𝜚 be of the following form:

𝜚 =
[

I [ΠV ⊗ Y ]T [ΨV ⊗ Y ]T
b∈𝒮 b

V
[ΨV ⊗ Y ]T

b∈𝒮 b
IV

]T
(46)

then combining (45) with (46), we have

Θ = 𝜚T
𝜙3𝜚 (47)

In addition, sincee{𝜙
1
bmn} < 0 ande{𝜙

2
ab} < 0, based on the MTPM’s boundary (9), we have the following inequalities:

∑

b∈𝒮1

∑

n∈𝒮 n
V

(𝜛b
mn(k) − 𝜛̌b

mn)(𝜛b
mn(k) − 𝜛̂b

mn)Y T
e{𝜙

1
bmn}Y > 0 (48)

∑

b∈𝒮 b
V

(𝜋ab(k) − 𝜋̌ab)(𝜋ab(k) − 𝜋ab)Y T
e{𝜙

2
ab}Y > 0 (49)

Similarly, (48), (49) yields

𝜚

T
𝜙1𝜚 > 0, 𝜚

T
𝜙2𝜚 > 0 (50)

Considering the condition
∑s2

n=1𝜛
rk+1
mn (k) = 1, one has

⎛
⎜
⎜
⎝

∑

n∈𝒮 n
IV

𝜛

b
mn − 1

⎞
⎟
⎟
⎠

+
∑

n∈𝒮 n
V

𝜛

b
mn(k) = (ΨIV − 1) +

∑

n∈𝒮 n
V

𝜛

b
mn(k) = 0,

where ΨIV is defined in (10). Furthermore, we can rewrite it as

0 =
∑

b∈𝒮 b
IV

𝜋ab

⎛
⎜
⎜
⎝

(ΨIV − 1) +
∑

n∈𝒮 n
V

𝜛

b
mn(k)

⎞
⎟
⎟
⎠

Y T
e{𝜙

4
bm}Y +

∑

b∈𝒮 b
V

𝜋ab(k)
⎛
⎜
⎜
⎝

(ΨIV − 1) +
∑

n∈𝒮 n
V

𝜛

b
mn(k)

⎞
⎟
⎟
⎠

Y T
e{𝜙

4
bm}Y

=
∑

b∈𝒮 b
IV

𝜋ab(ΨIV − 1)Y T
e{𝜙

4
bm}Y +e

⎧
⎪
⎨
⎪
⎩

∑

b∈𝒮 b
IV

∑

n∈𝒮 n
V

𝜛

b
mn(k)Y T

𝜋ab𝜙
4
bmY

⎫
⎪
⎬
⎪
⎭

+e
⎧
⎪
⎨
⎪
⎩

∑

b∈𝒮 b
V

𝜋ab(k)Y T(ΨIV − 1)𝜙
4
bmY

⎫
⎪
⎬
⎪
⎭

+e
⎧
⎪
⎨
⎪
⎩

∑

b∈𝒮 b
V

∑

n∈𝒮 n
V

𝜋ab(k)𝜛b
mn(k)Y T

𝜙

4
bmY

⎫
⎪
⎬
⎪
⎭

(51)

Combining (51) with (46), we have

𝜚

T
𝜙4𝜚 = 0 (52)

By the similar process, bearing in mind that
∑s1

b=1𝜋ab(k) = 1, there is

𝜚

T
𝜙5𝜚 = 0 (53)

Combining (47), (50), (52) with (53), one has

𝜚

T(𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5)𝜚 = 𝜚TΥ𝜚 > 𝜚T
𝜙3𝜚 = Θ

Considering the form of 𝜚 and Θ, according to condition (42) and (43), we deduce that

0 > 𝜚T(Υ1
𝜁 j + Υ)𝜚 > Θ + Ω𝜁 j(a,m) − Γ2

𝜁

= Y T
̃P(a,m)Y + Ω

𝜁 j(a,m) − Γ2
𝜁

0 > 𝜚T(Υ2
𝜁 j + ljΥ)𝜚 > ljΘ + lj(Ω𝜁 j(a,m) − Γ2

𝜁

) + Γ2
𝜁

= lj

(

Y T
̃P(a,m)Y + Ω

𝜁 j(a,m)
)

− ljΓ2
𝜁

+ Γ2
𝜁
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828 ZHU et al.

Then (38) is satisfied. Meanwhile, (44) is the same as (37) in Theorem 2. According to Theorem 2, the error systems (8)
are stochastically stable with a desired extended dissipative performance.

This completes the proof. ▪

Remark 4. Theorem 3 presents the asynchronous filter design for the networked FN-MJSs such that the extended
dissipative performance can be satisfied. And this performance provides more flexibility with specific performance param-
eters1,2,3 and4 taken, which covers the H∞ performance, l2 − l∞ performance, passivity and dissipativity. To be
specific, by setting1 = −I,2 = 0,3 = 𝛾2I and4 = 0, Theorem 3 turns into H∞ filtering case, which has been stud-
ied in Hua et al.24 The strict (Q, S,R)-dissipativity filtering can be obtained if one choose 1 = Q, 2 = S, 3 = R − 𝛾I
and 4 = 0, which covers the existing results of Kim et al.15 Meanwhile, the non-homogeneous filtering considered in
this paper is a more general situation. When the MTPM of MJSs (1) is time-invariant, Theorem 3 turns into the results in
Tao et al.22

4 SIMULATION

In this section, a practical example is presented to demonstrate the effectiveness of the proposed event-triggered
asynchronous filter design with dynamic quantization for the networked FN-MJSs.

Considering a tunnel diode circuit shown in Figure 2, it fuzzy model is given by Ding et al.34 as

iD(t) = 0.002VD(t) + 0.01V 3
D(t)

where x1(t) ≜ VC(t), x2(t) ≜ iL(t). The tunnel diode circuit can be described by the following equations:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Cẋ1(t) = −0.002x1(t) − 0.01x3
1(t) + x2(t)

Lẋ2(t) = −x1(t) − Rx2(t) + 𝜔(t)
y(t) = x1(t)
z(t) = x1(t) + 0.1𝜔(t)

The parameters in the circuit are chosen as: the resistance R = 1Ω, the capacitance C = 20 mF and the inductance L = 1
H. By the Euler’s discretization method, the aforementioned equations can be rewritten as:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x1(k + 1) = x1(k) + T(−0.5x3
1(k) − 0.1x1(k) + 50x2(k))

x2(k + 1) = x2(k) + T(−x1(k) − x2(k) + 𝜔(k))
y(k) = x1(k)
z(k) = x1(k) + 0.1𝜔(k)

where T is the sampling time. Similarity, the fuzzy modeling of the other mode are the same as Assawinchaichote et al.3
Using a sampling time T = 0.02s, the discrete-time T-S fuzzy model is obtained as:

F I G U R E 2 Tunnel diode circuit
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ZHU et al. 829

Plant Rule 𝜁 : IF x1(k) is h
𝜁

(x1(k)), THEN

⎧
⎪
⎨
⎪
⎩

x(k + 1) = A
𝜁ax(k) + B

𝜁a𝜔(k)
y(k) = C

𝜁ax(k)
z(k) = L

𝜁ax(k) + R
𝜁a𝜔(k)

where the parameters are given as: for all 𝜁 ,a,

A11 =

[
0.9987 0.9024
−0.0180 0.8100

]

,A12 =

[
0.998 1
−0.02 0.98

]

,A21 =

[
0.90337 0.8617
−0.0172 0.8103

]

,

A22 =

[
0.908 1
−0.02 0.98

]

,B11 =

[
0.0093
0.0181

]

,B12 =

[
0

0.02

]

,B21 =

[
0.0091
0.0181

]

,

B22 =

[
0

0.02

]

,C
𝜁a =

[

1 0
]

,L
𝜁a =

[

1 0
]

,R
𝜁a = 0.1,

The membership functions of the FN-MJSs are given as:

h1(x1(k)) =
(

1 − 1
1 + e−3(x1(k)−0.5𝜋)

) (
1

1 + e−3(x1(k)+0.5𝜋)

)

h2(x1(k)) = 1 − h1(x1(k))

And the membership functions of the filter are chosen as:

g1(x̂1(k)) = 0.99e
−x̂2

1 (k)

2×1.52
, g2(x̂1(k)) = 1 − g1(x̂1(k))

According to gj(x̂1(k)) − ljhj(x̂1(k)) ≥ 0, we can get l1 = 0.8, l2 = 0.95. Here we assume the time-varying MTPMs are totally
unknown whose bounds are given by:

𝜋̌ab =

[
0.5 0.2
0.4 0.3

]

, 𝜋ab =

[
0.8 0.5
0.7 0.6

]

, 𝜛̌

1
mn =

[
0.6 0.3
0.6 0.3

]

,

𝜛̂

1
mn =

[
0.7 0.4
0.7 0.4

]

, 𝜛̌

2
mn =

[
0 0.8
0 0.8

]

, 𝜛̂

2
mn =

[
0.2 1
0.2 1

]

,

Let the initial system state be x(0) =
[
−2.5 1

]T while the initial state of the filter is x̂(0) =
[
0 0

]T. The expectation of
𝛼kj

can be selected as E{𝛼kj
} = 0.8. And the disturbance noise is borrowed from Liu et al.,35 that is,𝜔(k) = sin(k)e−0.1k. Now

taking into account the design of the event-triggered asynchronous filter with dynamic quantization, the event-triggered
scheme parameter is set as 𝜎 = 0.1. And motivated by Liu et al.,36 the dynamic quantizer is chosen as

q
𝜇

(y(kj)) =
⎧
⎪
⎨
⎪
⎩

100𝜇sgn(y(kj)), if ||y(kj)|| > 100𝜇

𝜇⌊
y(kj)
𝜇

+ 0.1⌋, if ||y(kj)|| ≤ 100𝜇

where the quantization ranges are defined as = 100, the error bounds are given as Δ = 0.1. According to Lemma 1,
the quantization levels parameter is 𝛿 = 0.0514. From (14), we obtain the quantization levels condition:

1 × 10−2||y(kj)|| ≤ 𝜇(k) ≤ 1.0514 × 10−2||y(kj)||

Without loss of generality, we choose 𝜇(k) = 1.0514 × 10−2||y(kj)||.
In this paper, two classical performance are investigated: H∞ performance and l2 − l∞ performance which are included

in the extended dissipative performance.
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830 ZHU et al.

4.1 Case I: H∞ performance

Firstly we define the extended dissipative performance parameters as 1 = −I, 2 = 0, 3 = 𝛾2I, 4 = 0, and this cor-
responds to the H∞ performance. According to Theorem 3, we can obtain the H∞ filter gains and the event-triggered
parameters:

Af 11 =

[
−0.1171 1.2549
−0.1460 0.9811

]

,Af 12 =

[
−0.0985 1.1263
−0.1422 0.9631

]

,Af 21 =

[
−0.1171 1.2549
−0.1460 0.9811

]

,Af 22 =

[
−0.0985 1.1279
−0.1422 0.9631

]

,

Bf 11 =

[
2.4242
0.2855

]

,Bf 12 =

[
2.3750
0.2746

]

,Bf 21 =

[
2.4242
0.2855

]

,Bf 22 =

[
2.3750
0.2746

]

,Φ1 = 4.3488,Φ2 = 4.3227,

Cf 11 =
[

0.5087 0.0686
]

,Cf 12 =
[

0.5008 0.2519
]

,Cf 21 =
[

0.5087 0.0686
]

,Cf 22 =
[

0.5008 0.2519
]

,

The optimal noise attenuation performance is 𝛾∗ = 2.0386. Consequently, we can have a conclusion that the error
systems (8) are stochastically stable with prescribed H∞ noise attenuation performance 𝛾∗ = 2.0386.

With the above parameters, the Monte Carlo simulation is performed and we run this simulation 100,000 times to
account for the average H∞ performance under dropouts. Figure 3 depicts the systems and filter mode, which shows
that the filter mode is asynchronous with the original one. Figure 4 displays the objective signal and average estimated
signal(100,000 times) with dynamic quantization where the red dotted line and blue line denote the z(k) and E{ẑ(k)}
respectively. Here the pink area represents the location of all 100,000 estimated signals. Figure 5 shows the error response
where blue line denotes E{ez(k)} and the pink area represents the location of all 100,000 error responses. One sample of the
release interval shown in Figure 6 implies that the event-triggered scheme is effective to reduce the sampling frequency.
The dynamic quantization levels shown in Figure 7 are time-varying and get small gradually to mitigate performance
degradation.

4.2 Case II: l2 − l∞ performance

Here we choose the extended dissipative performance parameters as 1 = 0, 2 = 0, 3 = 𝛾2I, Rh = 0, 4 = I and this
corresponds to the l2 − l∞ performance. According to Theorem 3, we can obtain l2 − l∞ filter gains and the event-triggered
parameters:

Af 11 =

[
−0.0508 1.2668
−0.1452 0.9860

]

,Af 12 =

[
−0.0193 1.1543
−0.1391 0.9659

]

,Af 21 =

[
−0.0508 1.2667
−0.1452 0.9860

]

,Af 22 =

[
−0.0193 1.1542
−0.1391 0.9659

]

,

Bf 11 =

[
2.2396
0.2787

]

,Bf 12 =

[
2.1625
0.2631

]

,Bf 21 =

[
2.2396
0.2787

]

,Bf 22 =

[
2.1625
0.2631

]

,Φ1 = 3.2709,Φ2 = 3.2626,

Cf 11 =
[

0.1421 −0.8163
]

,Cf 12 =
[

0.1425 −0.8205
]

,Cf 21 =
[

0.1419 −0.8158
]

,Cf 22 =
[

0.1422 −0.8191
]

,

F I G U R E 3 The evolution of systems and filter mode of H∞ performance
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ZHU et al. 831

F I G U R E 4 The estimation signal of systems and filter of H∞ performance

F I G U R E 5 Error response of H∞ performance

F I G U R E 6 One sample of release interval and instants of H∞ performance

The optimal l2 − l∞ noise attenuation performance 𝛾∗ = 1.9552. Consequently, the error systems (8) under quantization
levels condition are stochastically stable with an l2 − l∞ disturbance attenuation performance.

Similarly, the Monte Carlo simulation is performed and we run this simulation 100,000 times to account for the average
l2 − l∞ performance under dropouts. Figure 8 depicts the systems and filter mode. Figure 9 displays z(k) (red dotted line)
and E{ẑ(k)} (blue line) with dynamic quantization where the pink area represents the location of all 100,000 estimated
signals. Figure 10 shows E{ez(k)} where the pink area represents the location of all 100,000 error responses. The release
interval is shown in Figure 11 and the quantization levels are displayed in Figure 12. Differing from the static quantization

 10991115, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acs.3551 by U

niversity O
f Science, W

iley O
nline L

ibrary on [10/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



832 ZHU et al.

F I G U R E 7 Quantization levels of H∞ performance

F I G U R E 8 The evolution of systems and filter mode of l2 − l∞ performance

F I G U R E 9 The estimation signal of systems and filter of l2 − l∞ performance
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ZHU et al. 833

F I G U R E 10 Error response of l2 − l∞ performance

F I G U R E 11 One sample of release interval and instants of l2 − l∞ performance

F I G U R E 12 Quantization levels of l2 − l∞ performance

levels, the quantization levels adopted in this paper change adaptively based on the signal to be quantized for mitigating
performance degradation.

From the case I and case II, we can summarize that the extended dissipative performance of the networked FN-MJSs
can be guaranteed by the event-triggered asynchronous filter with dynamic quantization.

5 CONCLUSION

In this paper, the event-triggered asynchronous filtering for the networked FN-MJSs with dynamic quantization
is studied. Within the general framework of extended dissipativity, an asynchronous filter is designed where the
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834 ZHU et al.

event-triggered scheme and the dynamic quantization technology is adopted to alleviate packet dropout. Based on the
fuzzy-rule-independent Lyapunov function, sufficient conditions are given such that the error systems under quantization
levels condition are stochastically stable with desired extended dissipative performance. Furthermore, the asynchronous
filter is designed which is given in the form of linear matrix inequalities where the free-connection weighting matrices are
utilized to deal with the time-varying MTPMs. Simulations are presented to examine the effectiveness of the asynchronous
filter design where classical H∞ performance and l2 − l∞ performance are investigated.
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